При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Среди перечисленных ниже физических величин скалярная величина указана в строке:

1) перемещение

2) сила

3) импульс

4) скорость

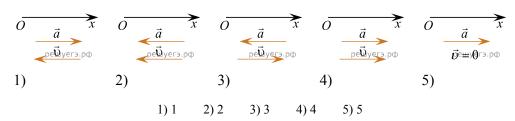
5) работа

2. Велосипедист равномерно движется по шоссе. Если за промежуток времени $\Delta t_1 = 5.0$ с он проехал путь s_1 = 60 м, то за промежуток времени Δt_2 = 7,0 с велосипедист проедет путь s_2 , равный:

1) 64 m 2) 70 m 3) 77 m 4) 84 m

5) 90 M

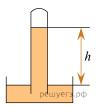
3. Почтовый голубь дважды пролетел путь из пункта A в пункт B, двигаясь с одной и той же скоростью относительно воздуха. В первом случае, в безветренную погоду, голубь преодолел путь АВ за промежуток времени $\Delta t_1 = 35$ мин. Во втором случае, при попутном ветре, скорость которого была постоянной, голубь пролетел этот путь за промежуток времени $\Delta t_2 = 30$ мин.


Если бы ветер был встречный, то путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

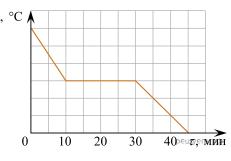
1) 30 мин

2) 35 мин

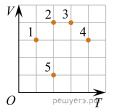
3) 38 мин 4) 42 мин 5) 45 мин


4. Кинематический закон движения материальной точки вдоль оси Ох имеет вид: $x(t)=5-9t+4t^2$, где координата x выражена в метрах, а время t — в секундах. Скорость \vec{v} и ускорение \vec{a} материальной точки в момент времени $t_0 = 0$ с показаны на рисунке, обозначенном цифрой:

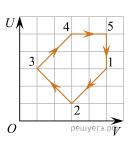
5. Металлический шарик массой $m = 80 \, \Gamma$ падает вертикально вниз на горизонтальную поверхность стальной плиты и отскакивает от нее вертикально вверх с такой же по модулю скоростью: $v_2 = v_1$. Если непосредственно перед падением на плиту модуль его скорости $v_1 = 5,0$ $\frac{M}{C}$, то модуль изменения импульса $|\Delta p|$ шарика при ударе о плиту равен:


1)
$$0.2\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$$
 2) $0.4\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$ 3) $0.6\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$ 4) $0.8\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$ 5) $1.0\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$

6. Запаянную с одного конца трубку наполнили маслом ($\rho = 900 \ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$), а затем погрузили открытым концом в широкий сосуд с маслом (см.рис.). Если атмосферное давление p = 99.9 кПа, то высота столба h равна:


1) 11,1 m 2) 11,8 m 3) 12,5 m 4) 13,2 m 5) 13,6 m

7. В момент времени $\tau_0=0$ мин кристаллическое вещество начали охлаждать при постоянном давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени τ . Половина массы вещества закристаллизовалась к моменту времени τ_1 , равному:


1) 5 мин 2) 10 мин 3) 20 мин 4) 30 мин 5) 35 мин

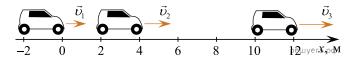
8. На V-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5

9. С идеальным одноатомным газом, количество вещества которого постоянно, провели процесс $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$. На рисунке показана зависимость внутренней энергии U газа от объема V. Укажите участок, на котором количество теплоты, полученное газом, шло только на работу, которую газ совершал:

1) $1 \rightarrow 2$ 2) $2 \rightarrow 3$ 3) $3 \rightarrow 4$ 4) $4 \rightarrow 5$ 5) $5 \rightarrow 1$

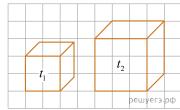
10. Мощность электромобиля измеряется в:

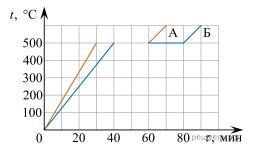

1) киловаттах 2) киловольтах 3) килоамперах 4) киловатт-часах 5) килоомах

11. Из одной точки с высоты H бросили два тела в противоположные стороны. Начальные скорости тел направлены горизонтально, а их модули $\upsilon_1=10$ м/с и $\upsilon_2=15$ м/с. Если расстояние между точками падения тел на горизонтальной поверхности земли L=100 м, то чему равна высота H? Ответ приведите в метрах.

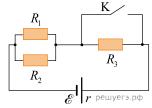
12. Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 6.0 м, B = 8.0 м/с , C = 2.0 м/с 2 . Если масса тела m = 1.1 кг, то в момент времен t = 3.0 с мгновенная мощность P силы равна ... **Вт**.

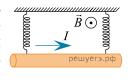
13. На дне вертикального цилиндрического сосуда, радиус основания которого R=10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=215 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды ($\rho_{\rm B}=1,00$ г/см³), равный ... **см**³.


14. На рисунке представлены фотографии электромобиля, сделанные через равные промежутки времени $\Delta t = 1.8$ с. Если электромобиль двигался прямолинейно и равноускоренно, то в момент времени, когда был сделан второй снимок, проекция скорости движения электромобиля v_x на ось Ox была равна ... км/ч.

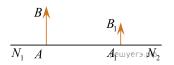

15. В сосуде под давлением p=450 кПа находится кислород (M=32 г/моль) массой m=500 г при температуре t=18 °C. Чему равна вместимость V сосуда? Ответ приведите в литрах.

Примечание. Кислород считать идеальным газом.

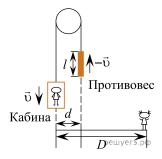

16. Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика $t_1 = 20$ °C, а второго — $t_2 = 55$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °C.


17. Два образца А и Б, изготовленные из одинакового металла, расплавили в печи. Количество теплоты, подводимое к каждому образцу за одну секунду, было одинаково. На рисунке представлены графики зависимости температуры t образцов от времени τ . Если образец А имеет массу $m_{\rm A}=4,5~{\rm K}\Gamma$, то образец Б имеет массу $m_{\rm B}$, равную ... кг.

18. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=6,00$ Ом, $R_3=2,00$ Ом. По цепи в течение промежутка времени t=30,0 с проходит электрический ток. Если ЭДС источника тока $\epsilon=12,0$ В, а его внутреннее сопротивление r=1,00 Ом, то работа $A_{\rm CT.}$ сторонних сил источника тока при разомкнутом ключе К равна ... Дж.



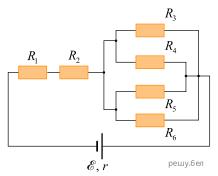
- **19.** Два находящихся в вакууме маленьких заряженных шарика, заряды которых $q_1 = q_2 = 40$ нКл массой m = 8,0 мг каждый подвешены в одной точке на лёгких шёлковых нитях одинаковой длины. Если шарики разошлись так, что угол между нитями составил $\alpha = 90^{\circ}$, то длина каждой нити l равна ... **см**.
- **20.** В однородном магнитном поле, модуль индукции которого B=0,20 Тл, на двух одинаковых невесомых пружинах жёсткостью k=100 Н/м подвешен в горизонтальном положении прямой однородный проводник длиной L=1,0 м (см. рис.), Линии магнитной индукции горизонтальны и перпендикулярны проводнику. Если при отсутствии тока в проводнике длина каждой пружины была x_1



- = 21 см, то после того, как по проводнику пошёл ток I = 40 А, длина каждой пружины x_2 в равновесном положении стала равной ... см.
- **21.** В идеальном LC-контуре, состоящем из катушки индуктивности $L=20~{\rm M}\Gamma$ н и конденсатора емкостью $C=0,22~{\rm M}{\rm K}\Phi$, происходят свободные электромагнитные колебания. Если в момент времени, когда сила тока в катушке $I=40~{\rm M}{\rm A}$, напряжение на конденсаторе $U=10~{\rm B}$, то полная энергия контура равна ... мкДж.

- **22.** Маленькая заряжённая бусинка массой m=1,5 г может свободно скользить по оси, проходящей через центр тонкого незакреплённого кольца перпендикулярно его плоскости. По кольцу, масса которого M=4,5 г и радиус R=40 см, равномерно распределён заряд Q=3,0 мкКл. В начальный момент времени кольцо покоилось, а бусинке, находящейся на большом расстоянии от кольца, сообщили скорость, модуль которой $\upsilon_0=2,4$ $\frac{\rm M}{\rm C}$. Максимальный заряд бусинки $q_{\rm max}$, при котором она сможет пролететь сквозь кольцо, равен ... **нКл**.
- **23.** Стрелка AB высотой H=3.0 см и её изображение A_1B_1 высотой h=2.0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7.0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

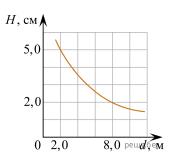

- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\mathrm{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm C}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_\Pi=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4\ \frac{\mathrm{pa_{A}}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

